Online appendix for:
Air-Writing Recognition Using Smart-Bands

Tomer Yanaya, Erez Shmuelia,*

aDepartment of Industrial Engineering, Tel-Aviv University
Ramat Aviv, 69978 Tel Aviv, Israel

Abstract

This is an online appendix for the paper: “Air-Writing Recognition Using Smart-Bands”. It reports additional experiments that we conducted to answer the following research questions:

1. What is the contribution of different system components (e.g., different motion signals) to the method’s performance?
2. How sensitive is our method to different writing sizes?
3. How sensitive is our method to the letter case used?
4. How robust is the user-independent method with respect to the number of train subjects used?
5. How does the user-independent method compare to other state-of-the-art methods?

Keywords: Air-writing recognition, Gesture recognition, Wearables, Dynamic-time-warping, Convolutional-neural-networks

*Corresponding author

Email addresses: yanaytomer@gmail.com (Tomer Yanay), shmueli@tau.ac.il (Erez Shmueli)
Appendix A. Contribution Analysis

In this part of the evaluation we sought to understand the contribution that different components had to the performance of our method by comparing our method to the following alternatives:

- The same method without the preprocessing phase, which enables us to understand the contribution of this phase.
- The same method using different subsets of signals, which enables us to identify the contribution of different motion signals.

First, we compared our method to a variation that did not apply the preprocessing phase. A comparison between the performance of the two methods is presented in figure A.1(left). As can be seen from the figure, applying the preprocessing phase improves mean accuracy from 85.5% to 89.2%. This difference was found to be significant (t-test, \(p < 0.001 \)). This improvement can be linked to reducing the differences in letters associated with writing rate and size.

![Figure A.1: Contribution of the preprocessing phase for the user-dependent method. The subfigure on the left shows recognition accuracy with and without the preprocessing phase (each point represents a single subject). The subfigure on the right presents the distribution of writing times of all samples (across all subjects and letters), where the orange dotted line marks the chosen writing time \(l \).](image)

It is important to note that throughout this paper we used a fix writing time of \(l = 2.5 \) seconds for the linear interpolation preprocessing stage. The rational behind choosing this number is given in Figure A.1(right), where it is shown that 95% of the samples had a writing time lower than 2.5.

In order to better understand the classification power of the different signals, we repeated the same evaluation process that was described above, each time using a different subset of signals.
More specifically, we used the following six subsets of features: (1) the two X axis signals, (2) the two Y axis signals, (3) the two Z axis signals, (4) the three Accelerometer signals, (5) the three gyroscope signals, and (6) all six signals. Figure A.2 reports the obtained results for these six subsets of features. One can see that signals of the Y and Z axes perform better than the X axis signal. This makes sense, as most of the movement in writing involves two main axes only. Moreover, the two sensor-based subsets of signals (i.e., ACC and GYR) perform similar to each other and both obtain a relatively high accuracy. This implies that for this specific task of writing letters, using just a single sensor might be sufficient. Finally, as one would expect, combining all six signals together further improves the results, yielding the best performance.

![Figure A.2: Recognition accuracy for the user-dependent method when using different subsets of signals](image-url)
Appendix B. Sensitivity to Writing Size

One may argue that the proposed method is extremely sensitive to the size of the writing movements. To better understand the effect of the writing size, we recruited 10 new subjects, and performed a dedicated data collection experiment. In this experiment, subjects were asked to provide 6 sets of all 26 English uppercase letter. In contrast to the main data collection experiment, we controlled the writing size of subjects by asking them to air-write within a hollow wooden frame, and in a manner that “fills the entire frame” (see Figure B.3(left)). Since the use of the frame also imposes limitations on the position of writing (and not only on its size), we allowed subjects to adjust the height of the frame to their convenience, by using a height-adjustable tripod. The above procedure was repeated 3 times with different frame sizes: large, medium and small, corresponding to the standard paper sizes A5, A6 and A7 respectively (see Figure B.3(right)), resulting in 4,680 (10 subjects * 3 sizes * 6 sets * 26 letters) samples.

Due to the relatively small number of sets collected for each subject, we included only a single set in the user’s reference set (i.e., $k = 1$), and the remaining five sets were used as the test set.

A comparison of the method’s performance for the three sizes is presented in Figure B.4. The left subfigure presents the results where the same writing size is used for the reference set and the test set. As can be seen from the subfigure as well as from a statistical significance test that we performed, we did not find a significant difference between the means of the three tested writing sizes (One Way ANOVA, $p > 0.7$). This result was surprising to us, as we hypothesized that
increasing the letter size would allow the smart-band to capture minor differences between writing movements, thereby increasing classification performance.

The result above led us to a new hypothesis that our method is potentially robust to different writing sizes. To test this hypothesis we performed a new comparison, where the reference set of a subject was selected from a single writing size, and all other sets of the subject (from all three writing sizes) were used as a test set, Figure B.4(right) presents the results of this analysis for the three writing sizes. Again, as can be seen from the subfigure, as well as from a statistical significance test that we performed, we did not find a significant difference between the means of the three tested writing sizes (One Way ANOVA, $p > 0.9$). Moreover, the performance of the three writing sizes in this comparison is very similar to those presented in the first comparison. This implies that a user can provide a single reference set in whatever writing size he prefers and later use the same system to recognize letter at different writing sizes. This is encouraging as even the same person might need to write in different sizes, depending on the situation at hand.

Note: The performance reported in this subsection is slightly higher than the one described in the main paper for $k = 1$. While this difference can be attributed to the different population tested and the number of test sets examined, we believe that this improvement was a result of using the wooden frame. The wooden frame imposes clear borders to the hand movement while writing, what we think gave better spatial orientation to subjects, and might have prevented the disorientation phenomenon described in the paper.
Appendix C. Sensitivity to Letter Case

In order to understand how the proposed method performs with respect to letter case (uppercase vs. lowercase), we performed an additional experiment, to which we recruited again 10 new subjects. In this experiment, subjects were asked to provide 6 sets of all 26 English uppercase letter, as well as 6 sets of all 26 English lowercase letter, resulting in 3,120 (10 subject * 2 letter case * 6 sets * 26 letters) samples.

Similarly to the previous section, in order to test the sensitivity of our method to letter case, we performed a complementary data collection experiment to which we recruited again 10 new subjects. In this experiment, subjects were asked to provide 6 sets of all 26 English uppercase letter, as well as 6 sets of all 26 English lowercase letter, resulting in 3,120 (10 subject * 2 letter case * 6 sets * 26 letters) samples.

Again, due to the relatively small number of sets collected for each subject, we included only a single set in the subject’s reference set (i.e., \(k = 1 \)), and the remaining five sets were used as part of the test set.

A comparison of the method’s performance for lowercase and uppercase letters is presented in Figure C.5. Surprisingly, we find that lowercase letters are somewhat easier to recognize (mean accuracy = 80%) than uppercase letters (mean accuracy = 75.6%), and the variance in the uppercase results is also much higher. Performing a t-test between the two distributions yielded a p-value slightly lower than 0.1, which we may consider significant taking into account the relatively small number of subjects. We believe that this difference can be attributed to two factors: (1) lowercase letters are much more common in everyday writing, so people are more accustomed to it, and (2) uppercase writing involves a relatively large number of pen lifts, thereby adding a layer of noise.
To conclude, Table C.1 presents the five pairs of lowercase letters with the highest misclassification error. For example, over 12% the total error comes from misclassifying the letter h as n and vice versa. Clearly, the pairs of lowercase letters being misclassified are entirely different than the pairs of uppercase letters being misclassified.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Letters pair</th>
<th>% of total error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>h, n</td>
<td>12.6%</td>
</tr>
<tr>
<td>2</td>
<td>b, p</td>
<td>6.1%</td>
</tr>
<tr>
<td>3</td>
<td>g, y</td>
<td>5.0%</td>
</tr>
<tr>
<td>4</td>
<td>a, d</td>
<td>3.8%</td>
</tr>
<tr>
<td>5</td>
<td>a, q</td>
<td>3.8%</td>
</tr>
</tbody>
</table>

Table C.1: Recognition accuracy for the user-dependent method with $k = 1$ on lowercase letters - the 5 most confusing letters pairs
Appendix D. Number of Training Subjects

In this subsection, we sought to test the robustness of the suggested system with respect to the number of training subjects. Recall that each training subject was associated with 390 training samples (26 letters * 15 sets). To this end, we trained our model using a varying quantity of subjects for training, ranging between 10 to 54. For each of these quantities, we repeated the analysis 55 times using a leave-one-person-out procedure, as described in the main paper, with the only exception that the relevant quantity of subjects was randomly selected from the set of 54 training subjects.

The average accuracy of the user-independent method as a function of the number of training subjects is shown in Figure D.6(left). As expected, the general trend is an increase in performance with more training subjects. Interestingly, our model provides reasonable performance for 20 training subjects (mean accuracy of 76.8%) and continues to improve with a diminishing effect after.

Figure D.6(right) presents the training runtime as a function of the number of training subjects. As can be seen from the figure, the model’s training time increases linearly with the number of training subjects. However, even for 54 subjects, the model’s training time does not exceed 7 minutes. It is also important to note that the time required for classifying a single sample during the operation phase is several orders of magnitudes lower than that required for the personalized model (0.001 second vs. 1 second respectively).

Figure D.6: Recognition accuracy (left) and training time (right) for the user-independent method for different amounts of training subjects
Appendix E. Comparison to Existing Methods

In this section, we compare the proposed CNN-based method to two other benchmark user-independent methods, which were described in the literature, and can be relatively easily be adjusted to the task of air-writing recognition using smart bands:

- A features-based method, which was described in [5, 8], and was used in the context of writing on a surface using smart bands.
- An HMM-based method, which was described in [1, 9, 2], and was used in the contexts of air-writing using a holdable device (i.e., a Wii-remote) or a dedicated wearable device (i.e., a wearable glove equipped with motion sensors).

Both of the benchmark methods were implemented by us in Python 3.6. For the features-based method, we used the same set of features as reported in [5, 8] (a detailed description of these features is provided in [6]). For the filtering task, we used the “SciPy” library [4]. As the classification algorithm we chose a Neural Network, which was reported in [5] to be the best performing method, and used the implementation of “scikit-learn” [7] with the parameters reported in [5]. As for the HMM-based method, we built an HMM model for each letter and fitted the model to our data using the python library “hmmlearn” [3]. As described in [9], before training, we performed Z-score normalization and moving average smoothing. For the model architecture, we used a Gaussian Mixture Model (GMM) with 5 gaussians as the emission function for each state. A different number of states was used for each letter, where we first split the letters into five groups according to their average writing length, and then applied a grid search to find the best number of states for each group (see Table E.2).

<table>
<thead>
<tr>
<th>Group #</th>
<th>Letters in group</th>
<th># of states examined</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C, L, U, V</td>
<td>4, 5, 6</td>
</tr>
<tr>
<td>2</td>
<td>N, O, S, X, Z</td>
<td>5, 6, 7</td>
</tr>
<tr>
<td>3</td>
<td>J, M, P, T, W, Y</td>
<td>6, 7, 8</td>
</tr>
<tr>
<td>4</td>
<td>B, D, G, H, I, K, Q</td>
<td>7, 8, 9</td>
</tr>
<tr>
<td>5</td>
<td>A, E, F, R</td>
<td>8, 9, 10</td>
</tr>
</tbody>
</table>

Table E.2: Groups of letters according to their average writing length
All three compared methods were evaluated using a leave-one-person-out procedure and without autocorrect phase. The classification performance obtained for each method is reported in Figure E.7. As can be seen, the CNN-based method outperforms both of the benchmark methods with a remarkable gap (83.2% for the CNN-based method vs. 12.1% and 15.1% for the features-based and HMM-based methods respectively).

![Figure E.7: A comparison to state-of-the-art methods - recognition accuracy](image)

One explanation for the inferiority of the features-based method can be the transition from the setting of writing on a surface to that of air-writing. We conjecture that in the case of air-writing, the used features are unable to capture the variance in the projection of the motion data on the smart-band axes. Therefore, additional effort should be invested in extracting a better set of features. As for the HMM-based method, in comparison to a previous study that investigated air-writing using a wearable glove and reported a much higher classification performance (81.9% accuracy), our setting differs in three major aspects: (1) in their setting, subjects were asked to write letters in a specific way, by indicating the order of movements, (2) the glove is worn closer to the body part that does the actual writing (the palm vs. the wrist in the case of a smart-band), and (3) the glove offers a significantly faster sampling frequency of 820 Hz in comparison to the 62 Hz offered by the Microsoft Band 2 used in our study.

To complete the picture, Figure E.8 presents the training and classification runtimes for each method. Figure E.8(left) presents the runtime in seconds for training over 21,060 samples (all
samples of 54 subjects). As can be seen from the figure, the CNN-based method is trained slightly faster than the HMM-based method, but significantly slower than the feature-based method (461 seconds for the CNN-based method vs. 4 seconds and 882 seconds for the features-based and the HMM-based methods respectively). However, it is important to mention that the training phase is executed only once, and therefore it does not affect the operation phase of the system. Figure E.8(right) presents the runtime in milliseconds for classifying a single sample. (In practice, the runtime was calculated for classifying 1000 samples and was then divided by 1000.) Again, as can be seen from the figure, the CNN-based method runs significantly faster than the HMM-based method, but also significantly slower than the feature-based method (12 vs. 41 and 0.01 milliseconds respectively). Nevertheless, a classification runtime of 12 milliseconds can be considered reasonable given the gained improvement in classification accuracy.

![Figure E.8: A comparison to state-of-the-art methods - recognition accuracy - training runtime (left) and classification runtime (right)](image-url)
References

